

O'Mega & WHIZARD: Monte Carlo Event Generator Generation For Future Colliders

Snowmass 2001

		1000		Level for the
C	010	\ + <i>c</i>	NO	+0
是 衛指臂	68) Y 66	11/-	-16	
		111	7 8	

	_	1
	ш	L

1 Mission	2
∘ High Energy Precision Physics ∘ Computer Aided Calculations	
2 O'Mega	5
∘ Perturbative Complexity ∘ DAGs & POWs ∘ Outlook	
3 WHIZARD	10
∘ VAMP ∘ Phase Space ∘ Component Architecture ∘ Example:	
$e^-e^+ ightarrow \nu_e \bar{\nu}_e b \bar{b} \circ Recent Advances$	
4 Further On Up The Road	19

1	Mission	2
2	O'Mega	5
3	WHIZARD	10
4	Further On Up The Road	19

Mission

Future Colliders as New Frontier in Energy and Precision:

- final states with many tagged weakly interacting particles accessible
- (in the absence of low energy SUSY:) physics beyond the standard model may only be accessible in precision tests of standard model processes
- ... we will need reliable predictions and simulation tools to unleash the full potential of the Future Colliders
 - studying EWSB requires complete (gauge invariant!) calculations
 - polarization must be included
- qualitatively more complicated than, say, LEP1
 - the number of Feynman diagrams explodes combinatorially
 - the algebraic expressions grow much more complicated with the growing number of building blocks (independent momenta and polarizations)
 - the gauge cancellations become extremely hazardous
 - the phase space also becomes much more intricate

- even if we had enough graduate students and postdocs, we should not waste them on repetitive "assembly line" calculations
- : formalize the calculations so that the repetitive part can be delegated to patient computers. Ideally:

```
Lagrangian, parameters 
final state, cuts 

⇒ efficient unweighted event generator
```

- partial solutions exist (CompHEP, Grace, and MADGRAPH), progress in Y2K
 - fast and complete tree level calculations for arbitrary models:
 O'Mega (T. O. et al.)
 - adaptive phase space generation for many particles:
 WHIZARD (Wolfgang Kilian), [using VAMP (T. O.)]
- some essential parts will need a lot more work
 - loops for many particles
 - : one-loop calculations for $2 \rightarrow 4$ remain the limit of our capabilities

O'	M	eg	ja

1	
	i

1	Mission
2	O'Mega
	Perturbative Complexity
	DAGs & POWs
	Outlook
3	WHIZARD
4	Further On Up The Road

The number of tree Feynman diagrams w/ n legs in vanilla ϕ^3 -theory is

$$F(n) = (2n-5)!! = (2n-5) \cdot (2n-7) \cdot \ldots \cdot 3 \cdot 1$$

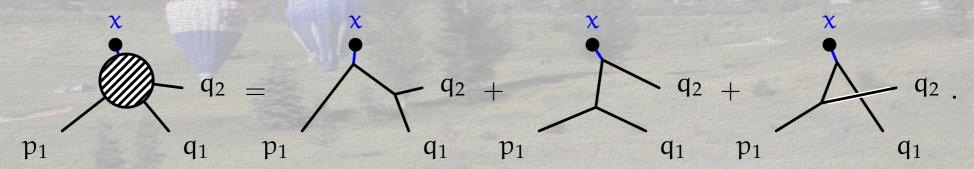
n	F(n)	P(n)
4	3	3
5	15	10
6	105	25
7	945	56
8	10395	119
9	135135	246
10	2027025	501
11	34459425	1012
12	654729075	2035

- computational costs grow beyond all reasonable limits
- gauge theory cancellations cause loss of precision

Number of independent momenta

$$P(n) = \frac{2^{n} - 2}{2} - n = 2^{n-1} - n - 1$$

- : Feynman diagrams extremely redundant for many particles in the final state!
- terms much too large to expect any help from common subexpression elimination by optimizing compilers that don't understand any physics!


Directed Acyclical Graphs (DAGs) are a more efficient representation for arithmetical expressions than the equivalent trees. E. g.:

$$ab(ab+c) = \underbrace{a + c}_{a + c} = \underbrace{a + c}_{a + c}$$

One particle off-shell wave functions (1POWs):

$$W(\mathbf{x}; \mathfrak{p}_1, \ldots, \mathfrak{p}_n; \mathfrak{q}_1, \ldots, \mathfrak{q}_m) = \langle \phi(\mathfrak{q}_1), \ldots, \phi(\mathfrak{q}_m); \mathsf{out} | \Phi(\mathbf{x}) | \phi(\mathfrak{p}_1), \ldots, \phi(\mathfrak{p}_n); \mathsf{in} \rangle .$$

E. g. $\langle \phi(q_1), \phi(q_2); \text{out} | \Phi(x) | \phi(p_1); \text{in} \rangle$ in unflavored scalar ϕ^3 -theory at tree level

the set of tree level 1POWs forms a DAG and can be constructed recursively

- Theorem: all tree level scattering amplitudes can be represented by combinations of 1POWs (correct combinations are termed keystones)
- this DAG can be constructed algorithmically and contains no more redundancies

Matrix element compiler O'Mega:

- functors building applications from independent modules for
 - physics models Models.SM, Models.SM_ac, Models.MSSM, ...
 - target languages Targets. Fortran, ...
- E.g. the application writing Fortran95 for the standard model is

- any volunteers for Java and C++ targets?
- O'Mega Virtual Machine on a chip???

- O'Mega amplitudes for up to 7 particles (" $2 \rightarrow 5$ ") tested against MADGRAPH
- agreement for random momenta always better than 10^{-11}
 - Get it from http://www.ikp.physik.tu-darmstadt.de/~ohl/omega/.

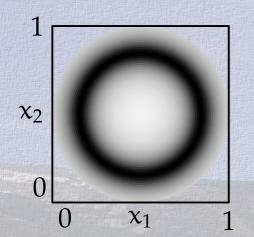
First realistic application

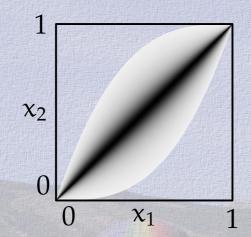
 Roberto Chierici, Stefano Rosati, Michael Kobel: full simulation of six fermion final states in W⁺W⁻ scattering for the TESLA Technical Design Report, using WHIZARD by Wolfgang Kilian as unweighted event generator.

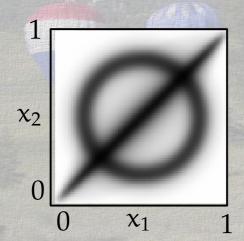
New Frontiers:

- QCD and color amplitudes still incomplete, but solution known, only coding required
- Supersymmetry and general MSSM exist in a preliminary versions, automated consistency checks under construction
- weak scale Gravity under construction
- O'Giga: O'Mega Graphical Interface for Generation and Analysis

	A		25 M	A .		
200 T	Λ	/	胡 型			
200	/ N		_ 8		- 48	25.00
	/ N		88 B	/ max 12	200 TE	1007
ALC: UN	ASSA.	ABS 8		 ARREST TO	HERE A	


	þ	ě		
7	7	h	١	
ĸ.	C	۱		
ш	×	1		
à	۷	2	7	


1	Mission	2
2	O'Mega	5
3	WHIZARD	10
	VAMP	10
	Phase Space	11
	Component Architecture	
	Example: $e^-e^+ \rightarrow \nu_e \bar{\nu}_e b\bar{b}$	
	Recent Advances	
4	Further On Up The Road	19


VEGAS' factorized ansatz can deal with

separately after appropriate mapping.

fails for overlapping singularities

which is the common case (if more than one diagram contributes)

: adaptive multichannel approach

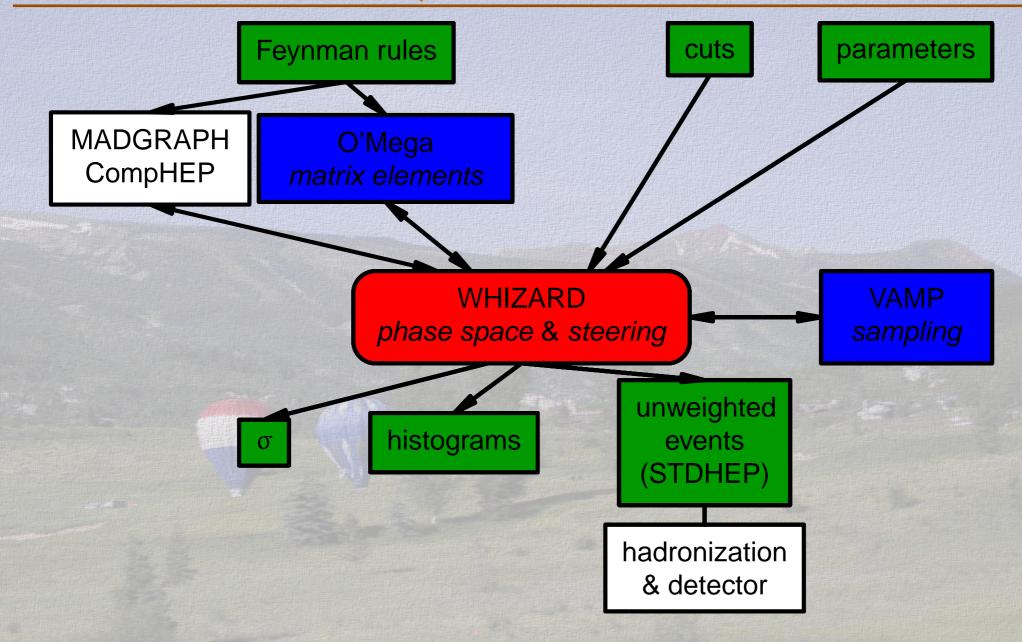
$$I(f) = \int_{M} d\mu(p) f(p)$$

$$I(f) = \sum_{i=1}^{N_c} \alpha_i \int_{0}^{1} g_i(x) d^n x \frac{f(\phi_i(x))}{g(\phi_i(x))}$$

with

$$g = \sum_{i=1}^{N_c} \alpha_i \cdot (g_i \circ \phi_i^{-1}) \left| \frac{\partial \phi_i^{-1}}{\partial p} \right|$$

works with factorized g_i adapted by VEGAS and α_i adapted by variance reduction.



- in general, $g \circ \phi_i$ does not factorize, even if all g_i factorize.
 - $\pi_{ij} = \phi_j^{-1} \circ \phi_i$: coordinate transformations among coordinate systems in which different singularities factorize.
- pure geometry: economical studies of dependence on cuts and parameters
 - π_{ij} universal and are calculated automatically by WHIZARD
 - ... VEGAS can optimize the gi for each set of parameters and cuts

However:

- : singularity structure determined by Feynman diagrams
- naive application brings the combinatorial explosion in through the back door!
 - : WHIZARD selects the important channels
 - s-channel resonances
 - 1/t-poles for massless particles

WHIZARD uses matrix elements from

O'Mega: polarized scattering of many weakly interacting particles, including unstable vector bosons and including (some) deviations from the standard model

MADGRAPH: polarized scattering of colored particles without gauge invariance problems from intermediate vector boson widths

CompHEP: faster for unpolarized scattering of few (possibly colored) particles

Usage:

Process file:

ID	In	Out	Method
zh	e1,E1	Z,H	chep
ZWW	el,El	Z,W+,W-	chep
nnbb	el,El	n1,N1,b,B	mad
nnucsd	el,El	n1,N1,u,C,s,D	omega

Compile: Makefile performs all necessary steps

- 21 diagrams in 4 groves (gauge invariant subsets): Higgsstrahlung (5),
 WW-fusion (10), ZZ (4), Z-FSR (2)
- Higgs signal topologies: sss and stt
- background topologies: sss, sst, stt, and ttt

Event generation at $\sqrt{s} = 350 \text{ GeV}$ for $m_H = 120 \text{ GeV}$.

- In the first pair of steps, VAMP's VEGAS-grids are adapted with fixed relative weights of the channels
- WHIZARD summarizes VAMP's diagnostics

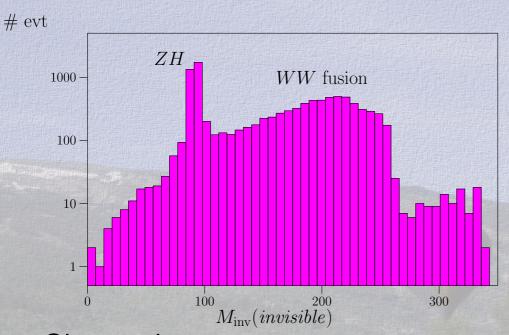
```
! It Calls Integral[fb] Error[fb] Err[%] Err/Exp Eff[%] Chi2
!------! Adapting (fixed weights): Generating 2 samples of 10000 events ...
2 20000 5.7019717E+01 1.58E+00 2.76 3.91* 2.31 0.31
```

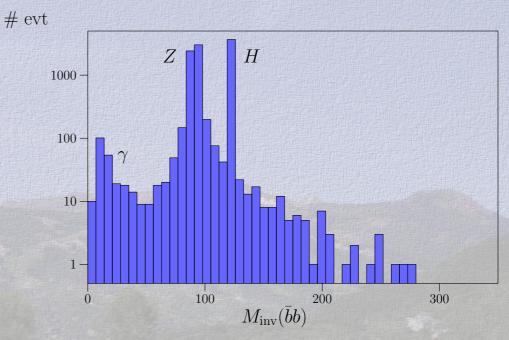
- efficiency not terrible ...
- ... Err/Exp too large

In the following steps, the relative weights of the channels are allowed to vary

```
Integral[fb] Error[fb] Err[%] Err/Exp Eff[%]
       Calls
                                                          Chi2
! It
! Adapting (var. weights): Generating 8 samples of 10000 events ...
                           1.23E+00
        10000 5.5642224E+01
                                      2.21
                                             2.21* 7.58
  3
        10000 5.9028368E+01 1.06E+00 1.80 1.80* 7.51
  4
        10000 5.8586436E+01 8.34E-01 1.42 1.42* 9.82
        10000 5.8997829E+01 6.89E-01 1.17 1.17* 12.18
        10000 5.8626448E+01 1.04E+00 1.78 1.78 10.78
        10000 5.7737567E+01 5.12E-01 0.89 0.89* 17.50
                                             0.82* 19.50
        10000 5.7693393E+01 4.75E-01 0.82
                           5.42E-01 0.93
                                             0.93 14.60
 10
        10000 5.8216141E+01
```

- significantly larger efficiency and very good Err/Exp
 - Finally generate some events


```
! Integrating (fixed w.): Generating 2 samples of 10000 events ...
12 20000 5.8910540E+01 4.25E-01 0.72 1.02 11.64 0.05
```


15 min for adaptation, 10 min for 10,000 unweighted events on a Pentium II 233 MHz.

missing mass

invariant bb-mass

Observations:

- adaption typically takes a bit longer than event generation
- adapted grids and weights can be saved and reloaded if the cuts and parameters are changed only slightly

WHIZARD is available from

http://www-ttp.physik.uni-karlsruhe.de/Progdata/whizard/.

Strongly interacting final states

- in principle, unweighted event generation already allowed feeding the events to a separate hadronization Monte Carlo (approach used for the TESLA TDR)
- but only for simple color configurations
- recently, Wolfgang Kilian has integrated an interface to PYTHIA with WHIZARD
- fully hadronized events are now just one WHIZARD flag (fragmentation_method) away
 - = 1 CALL PYEXEC (caveat: guesses color flow from ordering of external particles)
 - = 2 embed WHIZARD as external process(es) in PYTHIA (requires correct color amplitudes, availabe from MADGRAPH today, from O'Mega soon, hopefully . . .)

Further On Up The Road	18
1 Mission	2
2 O'Mega	5
3 WHIZARD	10
4 Further On Up The Road	19

- make O'Mega more complete (complete QCD, MSSM & LED)
- add better interaction of O'Mega and WHIZARD to avoid redundancies
 - O'Mega purely symbolical: values of masses, couplings, energies and cuts still unspecified
 - : channel selection has to be done in WHIZARD
- efficient incoherent jet-like sums, avoiding combinatorial explosion
- loops (holy grail)
 - effective actions in O'Mega
 - straightforward, but tedious
 - numerical approach
 - hard problem, others have failed
 - challenge!